The Effect of Commodity Prices and Exchange Rate on the Stock Return of Agriculture and Animal Feed Companies in Indonesia

Oktrevina Oktrevina (1), Yohannes Kurniawan (2), Norizan Anwar (3)
(1) School of Accounting, Bina Nusantara University, Jakarta, Indonesia , Indonesia,
(2) School of Information Systems, Bina Nusantara University, Jakarta, Indonesia, Indonesia,
(3) Faculty of Information Management, Universiti Teknologi Mara, UiTM, Puncak Perdana Campus, 40150, Shah Alam, Selangor, Malaysia, Indonesia

Abstract

The purpose of this study is to investigate the impact of selected commodity ratios and the exchange rate on the return on investment in agriculture and animal feed companies in Indonesia. The study employs the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) methodology, analyzing both monthly and daily data from 2014 to 2021, with a specific focus on the periods before and after the COVID-19 pandemic. The findings reveal significant relationships between commodity prices, exchange rates, and stock returns, with noticeable variations in these relationships during the COVID-19 timeline. One of the challenges encountered was the difficulty in accurately estimating parameters for error distribution using both GED and Student’s t-distribution, which impacted the selection of the best GARCH (1,1) model. The conclusions suggest that commodity prices and exchange rates are critical drivers of stock returns in these sectors. The study implies that investors should consider these variables when making investment decisions, particularly in light of the fluctuations in the USD/IDR exchange rate. This research provides a valuable reference for understanding the dynamics of returns on investment in Indonesian agriculture and animal feed companies, offering insights that can guide more informed investment strategies.

Full text article

Generated from XML file

References

Adeleye, B. N. (2018). Time series analysis (Lecture 2): Choosing optimal lags in EViews. Retrieved from Econometrics Resource for Beginners and Data Analysis: http://cruncheconometrix.blogspot.com/2018/02/time-series-analysis-lecture-2-choosing.html#

Albulescu, C. (2020). COVID-19 and the United States financial markets' volatility. Finance Research Letters, 38, 101699. https://doi.org/10.1016/j.frl.2020.101699

Almeida, R. J., Basturk, N., Kaymak, U., & Sousa, J. M. (2014). Estimation of flexible fuzzy GARCH models for conditional density estimation. Information Sciences, 267, 252-264. https://doi.org/10.1016/j.ins.2014.01.021

Antoniou, A., Koutmos, G., & Pericli, A. (2005). Index futures and positive feedback trading: Evidence from major stock exchanges. Journal of Empirical Finance, 12(2), 219-238. https://doi.org/10.1016/j.jempfin.2003.11.003

Baffes, J. (2007). Oil spills on other commodities. Resource Policy, 12(3), 126-134. https://doi.org/10.1016/j.resourpol.2007.08.004

Banerjee, A., & Sarkar, S. (2006). Modeling daily volatility of the Indian stock market using intra-day data. Retrieved from Working paper No: 588, IIM Calcutta: http://www.iimcal.ac.in/res/upd%5CWPS%20588

Black, F. (1976). Studies of stock price volatility changes. In Proceedings of the 1976 Meeting of the Business and Economic Statistics Section. American Statistical Association, Washington DC, 177-181.

Briere, M., & Szafarz, A. (2017). Factor investing: The rocky road from long-only to long-short. In E. Jurczenko (Ed.), Factor investing. Elsevier, forthcoming. https://doi.org/10.2139/ssrn.2908491

Chen, J., & Mansa, J. (2021). Investopedia. Retrieved from https://www.investopedia.com/terms/i/investor.asp

Cheteni, P. (2016). Stock market volatility using GARCH models: Evidence from South Africa and China stock markets. MPRA Paper No. 77355. https://doi.org/10.22610/jebs.v8i6(J).1497

Chiou, J.-S., & Lee, Y.-H. (2009). Jump dynamics and volatility: Oil and the stock markets. Energy, 34(6), 788-796. https://doi.org/10.1016/j.energy.2009.02.011

Chkili, W., Aloui, C., & Nguyen, D. K. (2012). Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates. Journal of International Financial Markets, Institutions, and Money, 22, 738-757. https://doi.org/10.1016/j.intfin.2012.04.009

Choi, K., & Hammoudeh, S. (2010). Volatility behavior of oil, industrial commodity, and stock markets in a regime-switching environment. Energy Policy, 39(6), 201-228. https://doi.org/10.1016/j.enpol.2010.03.067

Chu, C. S. J., Santoni, G. J., & Liu, T. (1996). Stock market volatility and regime shifts in returns. Information Sciences, 94(1-4), 179-190. https://doi.org/10.1016/0020-0255(96)00117-X

Cont, R. (2001). Empirical properties of asset returns: Stylized facts and stylized issues. Quantitative Finance, 1(2), 223-236. https://doi.org/10.1080/713665670

Danielsson, J. (2011). Financial risk forecasting: The theory and practice of forecasting market risk with implementation in R and Matlab (1st ed.). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119205869

Ding, Z. X., Granger, C., & Engle, R. (1993). A long-memory property of stock market returns and a new model. Journal of Empirical Finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D

Dritsaki, C. (2017). An empirical evaluation in GARCH volatility modeling: Evidence from the Stockholm Stock Exchange. Journal of Mathematical Finance, 7(2), 366-390. https://doi.org/10.4236/jmf.2017.72020

Eagle, R., & Bollerslev, T. (1986). Modelling the persistence of conditional variances. Retrieved from Econometric Reviews: https://doi.org/10.1080/07474938608800095

EViews, V. (2020, Nov 11). ARCH and GARCH estimation. Retrieved from Estimating ARCH Models In EViews: http://www.eviews.com/help/helpintro.html#page/content/arch-Estimating_ARCH_Models_in_EViews.html

Fan, Y., Zhang, Y. J., Tsai, H. T., & Wei, Y. M. (2008). Estimating 'value at risk' of crude oil price and its spillover effect using the ged-garch approach. Energy Economics, 30(6), 3156-3171. https://doi.org/10.1016/j.eneco.2008.04.002

Filis, G., Degiannakis, S., & Floros, C. (2013). Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis.

GMPT. (2021). Gabungan Perusahaan Makanan Ternak. Retrieved from http://gpmt.or.id/our-blog

Gorton, G., & Rouwenhorst, G. K. (2006). Facts and fantasies about commodity futures. Financial Analysts Journal, 47-48. https://doi.org/10.2469/faj.v62.n2.4083

Goyal, A., & Santa-Clara, P. (2003). Idiosyncratic risk matters! Journal of Finance, 58(3), 975-1007. https://doi.org/10.1111/1540-6261.00555

Greunen, J. V., Heymans, A., Heerden, C. V., & Vuuren, G. V. (2014). The prominence of stationarity in time. Journal for Studies in Economics and Econometrics, 38(1), 1-16. https://doi.org/10.1080/10800379.2014.12097260

Gui, H., & Savickas, R. (2008). Average idiosyncratic volatility in G7 countries. Reviews of Financial Studies, 21, 1259-1296. https://doi.org/10.1093/rfs/hhn043

Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics. New York: McGraw-Hill-Irwin.

Hartman, J., Wiklander, O., & Forsberg, L. (2012). Evaluating forecasts from the GARCH(1,1)-model for Swedish equities. Bachelor Thesis, Department of Statistics, Uppsala University.

Ildirar, M., & ??can, E. (2015). The interaction between stock prices and commodity prices: East Europe and Central Asia countries. International Conference on Eurasian Economies, 1(2), 13-14. https://doi.org/10.36880/C06.01350

Jiang, G., & Tian, Y. (2010). Forecasting volatility using long memory and comovements: An application to option valuation under SFAF 123R. Journal of Financial and Quantitative Analysis, 45(2), 502-533. https://doi.org/10.1017/S0022109010000116

Joesoef, J. (2008). Pasar uang & pasar valuta asing. Jakarta: Salemba Empat.

Kang, W., & Vespignani, J. L. (2017). Global commodity prices and global stock volatility shocks: Effects across countries. SSRN Electronic Journal, 35(1). https://doi.org/10.2139/ssrn.2963431

Karmakar, M. (2006). Stock market volatility in the long run, 1961-2005. Economic and Political Weekly, 41(18), 1796-1802.

Kemenperin, R. (2019). Analisa struktur industri pakan ternak dalam rangka pengembangan perwilayahan industri: Studi kasus pada WPPI Jawa Timur, Provinsi Jawa Timur.

Kenton, W. (2020, October 25). What is the GARCH process? How it's used in different forms. Retrieved from GARCH Process: https://www.investopedia.com

Lingbing, F., & Yanlin, S. (2017). A simulation study on the distributions of disturbances in the GARCH model. Cogent Economics & Finance, 2(1), 5. https://doi.org/10.1080/23322039.2017.1355503

Ludvigson, S., & Ng, S. (2007). The empirical risk-return relation: A factor analysis approach. Journal of Financial Economics, 83(1), 171-222. https://doi.org/10.1016/j.jfineco.2005.12.002

Mabrouk, S., & Saadi, S. (2012). Parametric value-at-risk analysis: Evidence from stock indices. The Quarterly Review of Economics and Finance, 52, 305-321. https://doi.org/10.1016/j.qref.2012.04.006

Naimy, V., Haddad, O., Fernández-Avilés, G., & Khoury, E. R. (2021). The predictive capacity of GARCH-type models in measuring the volatility of crypto and world currencies. Applied Economics and Quantitative Methods, 2(7), 17. https://doi.org/10.1371/journal.pone.0245904

Nedeljkovic, M., & Maksimovi?, A. (2019). Analysis and forecast of foreign trade indicators of corn in Bosnia and Herzegovina. Agroekonomika, 19(4), 265-274. https://doi.org/10.7251/AGREN1804265N

Nigatu, G., Badeau, F., Seeley, R., & Hansen, J. (2020). Factors contributing to changes in agricultural commodity prices and trade for the United States and the world. Washington: USDA.

Omari, O. C., Maina, M. S., & Ngina, I. (2020). Forecasting value-at-risk of financial markets under the global pandemic of COVID-19 using conditional extreme value theory. Journal of Mathematical Finance, 10(4), 569-597. https://doi.org/10.4236/jmf.2020.104034

Putra, A. R., & Robiyanto, R. (2019). The effect of commodity price changes and USD/IDR exchange rate on Indonesian mining companies' stock return. Jurnal Keuangan dan Perbankan, 28(2), 110. https://doi.org/10.26905/jkdp.v23i1.2084

Sabariah, N., Norhafiza, N., & Rusmawati, I. (2014). The impact of palm oil price on the Malaysian stock market performance. Journal of Economics and Behavioral Studies, 8.

Scotti, C. (2007). Markov switching GARCH models of currency turmoil in southeast Asia. Board of Governors of the Federal Reserve System (US). https://doi.org/10.17016/ifdp.2007.889

Sinbanda, K., & Mlambo, C. (2014). The impact of oil prices on the exchange rate in South Africa. Journal of Economics.

The CDMI Consulting Group. (2018-2022). Retrieved from https://www.cdmione.com/buku/animal-feed-industry-in-indonesia/

Tsay, R. S. (2005). Analysis of financial time series. Wiley, New Jersey. https://doi.org/10.1002/0471746193

Wan, Y., & Si, Y. W. (2017). A formal approach to chart patterns classification in financial time series. Information Sciences, 411, 151-175. https://doi.org/10.1016/j.ins.2017.05.028

Wenger, F. (2016, May 5). Wenger feed. Retrieved from Wheat for poultry and swine feeds: http://www.wengerfeeds.com

Wooldridge, J. M. (2009). Introductory econometrics: A modern approach. Boston: South Western, Cengage Learning.

Yaffee, R. A., & McGee, M. (2000). An introduction to time series analysis and forecasting: With applications of SAS® and SPSS®. New York: Academic Press, INC.

Zhang, C. (2010). A reexamination of the causes of time-varying stock return volatilities. Journal of Financial and Quantitative Analysis, 45(3), 663-684. https://doi.org/10.1017/S0022109010000232

Zhang, D., Min, H., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36(C). https://doi.org/10.1016/j.frl.2020.101528

Zhang, Z., Bali, T. G., Cakici, N., & Yan, X. (2005). Does idiosyncratic risk really matter? Journal of Finance, 60(2), 905-929. https://doi.org/10.1111/j.1540-6261.2005.00750.x

Authors

Oktrevina Oktrevina
oktrevina@binus.ac.id (Primary Contact)
Yohannes Kurniawan
Norizan Anwar
Oktrevina, O., Kurniawan, Y., & Anwar, N. (2022). The Effect of Commodity Prices and Exchange Rate on the Stock Return of Agriculture and Animal Feed Companies in Indonesia. Innovation Journal of Social Sciences and Economic Review, 4(4), 1–10. https://doi.org/10.36923/ijsser.v4i4.149

Article Details

Smart Citations via scite_
Views
  • Abstract 58891
  • Download PDF 280